Preliminary communication

ETHYNYLATION REACTIONS USING THE BIS(PHENYLETHYNYL)-CUPRATE(I) COMPLEX ANION. PREPARATION OF THE BIS(PHENYL-ETHYNYL)AURATE(I) COMPLEX ANION

O.M. ABU-SALAH* and A.R. AL-OHALY

Department of Chemistry, College of Science, King Saud University, P.O. Box No. 2455, Riyadh (Saudi Arabia)

(Received July 12th, 1983)

Summary

Four new routes are described for the preparation of the linear diorganoaurate(I) complex $[PhC_2AuC_2Ph]^-$. These are based on the reactions of the analogous copper(I) complex anion $[PhC_2CuC_2Ph]^-$ with $[PPh_3AuC_2Ph]$, $[PPh_3AuCl]$, $[ClAuC_2Ph]^-$, or $[AuC_2Ph]_n$.

Copper(I) and silver(I) arylacetylides produced fascinating organometallic complexes when treated with coordinatively-unsaturated complexes [1]. In our investigations of the reactivity of the diorganocuprate(I) complex [PhC₂CuC₂Ph]⁻, which was originally prepared as its sodium and potassium salts by Nast et al. [2], we found that the complex is very useful in organometallic synthesis. For example, it acts as an ethynylating agent when treated with the gold complexes [PPh₃AuC₂Ph], [PPh₃AuCl], [ClAuC₂Ph]⁻ or [AuC₂Ph]_n.

Thus the reaction of the complex $[(PPh_3)_2N][PhC_2CuC_2Ph]$, which is notably stabler than the sodium or potassium salts, with $[PPh_3AuC_2Ph]$ at room temperature in dichloromethane proceeded smoothly according to eq. 1.

 $[PhC_2CuC_2Ph]^{-} + PPh_3AuC_2Ph \rightarrow [PhC_2AuC_2Ph]^{-} + PPh_3CuC_2Ph$ (1)

The gold complex anion was obtained in a very high yield (ca. 95%) and was characterised by the usual methods and comparison with the data published for the complex [PPh₄] [PhC₂AuC₂Ph] [3]. The ν (C=C) band for the gold complex anion occurs at ca. 2105 cm⁻¹. This frequency is higher by ca. 25 cm⁻¹ than that for the copper(I) analogue, but is lower by ca. 20 cm⁻¹ than that of the complex [PPh₃AuC₂Ph]. The other product of the above reaction, PPh₃CuC₂Ph, was also obtained in a high yield, and characterized by the usual methods [4]. Previously the gold complex anion [PhC₂AuC₂Ph]⁻ has been prepared either by the reaction of AuI with KC₂Ph (1/2) or of AuC₂Ph with KC₂Ph (1/1) in liquid ammonia [3,5]. Other linear diorganoaurate(I) complexes were prepared using lithium reagents at low temperatures [6]. Apparently the lower tendency of copper(I) than gold(I) towards linear geometry [7] helps to drive this reaction, since tertiary phosphine complexes of copper phenylacetylide are dimeric in nitrobenzene solution, and, therefore, are not linear [4]. Tertiary phosphine complexes of alkylgold(I) complexes [8] are markedly more thermally stable than tertiary phosphine complexes of alkylcopper(I) complexes [9] and so the relative strength of the carbon—gold σ -bond may also contribute to the driving force for this reaction.

Both ligands in the complex [PPh₃AuCl] were displaced by phenylethynyl groups when it was added slowly (1/2) to a solution of [PhC₂CuC₂Ph]⁻ in dichloromethane, [CuC₂Ph]_n also being obtained (eq. 2).

$$2[PhC_{2}CuC_{2}Ph]^{-} + PPh_{3}AuCl \rightarrow [PhC_{2}AuC_{2}Ph]^{-} + CuC_{2}Ph + PPh_{3}CuC_{2}Ph + Cl^{-}$$
(2)

The organogold(I) chloride complex $[ClAuC_2Ph]^-$, which we reported recently [10], produced the same diorganogold(I) complex anion in a high yield when added (1/1) to a dichloromethane solution of the same copper(I) complex anion. Copper(I) phenylacetylide was the other product (eq. 3).

$$[PhC_2CuC_2Ph]^- + [ClAuC_2Ph]^- \rightarrow [PhC_2AuC_2Ph]^- + CuC_2Ph + Cl^-$$
(3)

It was recently shown that the organogold(I) iodide complex anion $[IAuC_2Ph]^-$ gives the same diorganogold(I) complex anion when treated (1/1) with PPh₃ [10].

Finally, the same diorganogold(I) complex was obtained by the reaction (1/1) of the copper reagent with phenylethynylgold, $[PnC_2Au]_n$. Phenylethynylcopper was the other product (eq. 4).

$$[PhC_2CuC_2Ph]^- + AuC_2Ph \rightarrow [PhC_2AuC_2Ph]^- + CuC_2Ph \qquad (4)$$

In this reaction the phenylacetylide group replaced the π -bond in [AuC₂Ph]_n.

In all the above reactions the gold retained its linear geometry while copper lost its linear geometry.

Acknowledgements. We thank Mr. M.K. Mahmoud and Mr. M. Ja'far for technical assistance.

References

- (a) O.M. Abu-Salah, M.I. Bruce, S.A. Bezman and M.R. Churchill, J. Chem. Soc., Chem. Comm., (1972) 858; (b) O.M. Abu-Salah and M.I. Bruce, Aust. J. Chem., 29 (1976) 531; (c) O.M. Abu-Salah and M.I. Bruce, ibid., 30 (1977) 2293.
- 2 R. Nast and W. Pfab, Chem. Ber., 89 (1956) 415.
- 3 R. Nast, P. Schneller and A. Hengefeld, J. Organomet. Chem., 214 (1981) 273.
- 4 G.E. Coates and C. Parkin, J. Inorg. Nucl. Chem., 22 (1961) 59.
- 5 R. Nast und U. Kirner, Z. Anorg. Allg. Chem., 330 (1964) 311.
- 6 (a) A. Tamaki and J.K. Kochi, J. Chem. Soc., Dalton Trans., (1973) 2620; (b) R. Usón, A. Laguna, M. Laguna and V. Perez, Synth. React. Inorg. Met.-Org. Chem., 11 (1981) 361.
- 7 R.J. Puddephatt, The Chemistry of Gold, Elsevier, 1978, p. 11 and ref. therein.
- 8 A. Tamaki and J.K. Kochi, J. Organomet. Chem., 61 (1973) 441.

10 O.M. Abu-Salah and A.R. Al-Ohaly, Inorg. Chim. Acta Lett., in press.

⁹ G. Costa, G. Pellizer and F. Rubessa, J. Inorg. Nucl. Chem., 26 (1964) 961; H.O. House, W.R. Respress and G.M. Whitesides, J. Org. Chem., 31 (1966) 3128; G.M. Whitesides, E.R. Stedronsky, C.P. Casey and J.S. San Filippo, J. Amer. Chem. Soc., 92 (1970) 1226.